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Abstract

The transient response of a semi-infinite, propagating crack subjected to dynamic anti-plane concentrated loading in
a piezoelectric medium is investigated. A new fundamental solution for the piezoelectric material is proposed and the
transient response of the propagating crack is determined by superposition of the fundamental solution in the Laplace
transform domain. Exact analytical transient solutions for the dynamic stress intensity factor, the dynamic electric
displacement intensity factor, and the dynamic energy release rate are obtained by using the Cagniard method of
Laplace inversion and are expressed in explicit forms. The results indicate that the dynamic intensities of a propagating
crack can be represented by the product of a universal function and the corresponding solution for a stationary crack. It
is also found that the dynamic stress intensity factor and the dynamic energy release rate go to zero as the propagating
speed approaches the Bleustein—-Gulyaev piezoelectric surface wave speed under this particular boundary condition.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

This work is a continuation of the study given by Ing and Wang (2004) in which the attention was focused
on the investigation of transient responses of a stationary crack subjected to anti-plane loading in a pie-
zoelectric material. In this study, a further investigation is performed to understand dynamic fracture re-
sponses of a propagating piezoelectric crack subjected to a pair of concentrated loadings on crack faces. The
transient behavior of a piezoelectric crack from stationary to propagation is analyzed and discussed in detail.

Recently, due to the intrinsic electro-mechanical coupling behaviors, piezoelectric materials have been
widely used as actuating and sensing devices in smart structures. Because of the brittle properties of most
piezoelectric materials, the failure analysis of piezoelectric structures has attracted more attention from
many researchers. Most of studies, however, are related to static or quasi-static conditions, e.g. Pak (1990),
Sosa (1992), Suo et al. (1992), Park and Sun (1995a,b), Zhang and Tong (1996), Narita and Shindo (1998a),
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Qin and Mai (1998), Gao and Fan (1999a,b), Shen et al. (1999), Yang and Kao (1999), Kwon and
Lee (2000), Ru (2000), Gao and Wang (2001), Yang (2001), and Li (2003). Because of the mathemati-
cal complications, less attention has been paid to the study of dynamic fracture mechanics of piezoelec-
tric materials. Shindo and Ozawa (1990) first investigated the steady-state response of a cracked
piezoelectric material subjected to plane harmonic waves. Afterward the dynamic fracture analysis of
piezoelectric materials was developed rapidly. For example, the single crack problem had been investigated
by Chen (1998), Narita and Shindo (1998b, 1999), Chen and Karihaloo (1999), Li (2001), Kwon and Lee
(2001), Shin et al. (2001), Meguid and Zhao (2002), and Ueda (2003), while the multiple cracks problem had
been studied by Wang and Meguid (2000), Wang et al. (2000), Meguid and Chen (2001), Wang (2001),
Zhao and Meguid (2002), and Zhou et al. (2003). However, due to the mathematical difficulties, most of the
researchers obtained their solutions by means of some numerical methods. The exact analytical solutions
for cracked piezoelectric materials are rare.

In the study of crack propagation, Yoffe (1951) was the first one to investigate a steady-state crack
growth problem of a crack of fixed length propagating in an infinite and purely elastic body subjected to a
uniform remote tensile stress. Subsequently, many researchers were devoted to the study of crack propa-
gation for purely elastic solids, e.g. Kostrov (1964, 1966), Achenbach (1970a,b), Freund (1972a,b, 1973,
1974), Ma and Burgers (1986, 1987, 1988), and Ma (1988, 1990). For piezoelectric crack problems, Li and
Mataga (1996a,b) first obtained transient closed-form solutions for dynamic stress and electric displace-
ment intensities and dynamic energy release rate of a propagating crack in hexagonal piezoelectric mate-
rials. They assumed that the crack surfaces are electrode- or vacuum-type boundary conditions and the
dynamic anti-plane point loading is initially applied at the stationary crack tip. Hence there is no char-
acteristic length presented in their problems. Chen and Yu (1997) studied the problem of anti-plane Yoffe’s
crack in an unbounded piezoelectric medium. Later, Chen et al. (1998) investigated the response of a finite
Griffith crack propagating along the interface of two dissimilar piezoelectric half-planes. Recently, Kwon
et al. (2000) investigated the crack problem of an infinitely long piezoelectric ceramic strip containing a
Griffith crack moving with constant velocity.

In this study, the transient response of a semi-infinite propagating crack subjected to dynamic anti-plane
concentrated loading on the crack faces in a hexagonal piezoelectric medium is investigated. The inherent
characteristic length makes the problem more difficult. A new fundamental solution is derived and the
transient solution is determined by superposition of the fundamental solution in the Laplace transform
domain. Similar superposition techniques had been successfully used to solve many transient problems of a
stationary crack (Ing and Ma, 1996, 1997a, 2001, submitted for publication; Ing and Wang, 2004) and a
propagating crack (Ing and Ma, 1997b, 1999, 2003; Ing and Lin, 2002) for purely elastic solids. It dem-
onstrates a powerful method to deal with crack problems with characteristic lengths. Under the assumption
of electrode boundary condition on crack surfaces (Bleustein, 1968; Li and Mataga, 1996a), exact analytical
transient solutions for the dynamic stress intensity factor, the dynamic electric displacement intensity
factor, and the dynamic energy release rate are obtained. Although the metallic coating condition is chiefly
a mathematically convenient proposition, this boundary condition is also appropriate if the crack surfaces
are in a state of electric contact, or if the crack is filled with conducting gas or liquid (Li and Mataga,
1996a). Only the intensities and energy release rate are derived in this study, however, the transient full-field
solutions for the crack propagation problem can also be obtained by using the fundamental solutions
proposed in the study.

2. Fundamental solutions of distributed loads applied on propagating crack faces

In this section, a fundamental problem is proposed and the associated fundamental solutions will be used
to solve the complicated problem of a propagating crack with a characteristic length in the next section.
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Consider an unbounded hexagonal piezoelectric medium containing a semi-infinite crack that lies on the
negative ¢-axis and propagates with a constant velocity v along the crack tip line. It is assumed that the
propagating crack surfaces are perfectly covered with an infinitesimally thin conducting electrode that is
grounded, such that the electrostatic potential vanishes over the entire crack surfaces. The solutions for an
anti-plane exponentially distributed traction applied to the propagating crack faces in the Laplace trans-
form domain will be referred to as the fundamental solutions. Because of the anti-symmetry of the problem,
it can be viewed as a half-plane problem with material occupying the region of y > 0, and subjected to the
following mixed boundary conditions in the Laplace transform domain

7.(¢,0,5) =e", for —oo< <0, (1)
¢(£,0,5) =0, for —oo < &< oo, (2)
w(&,0,5) =0, for0< ¢ < oo, (3)

where s is the Laplace transform parameter, and 7 is a constant. The coordinate £ is fixed with respect to the
moving crack tip. The overbar symbol is used for denoting the transform on time ¢. The one-sided Laplace
transform with respect to time and the two-sided Laplace transform with respect to ¢ are defined by
(Achenbach, 1973)

7(&7s) / F(Emned, ()

7 (y.s) /fzy, Jer de. (5)

If we consider only the out-of-plane displacement and the in-plane electric fields, the dynamic anti-plane
governing equations for a hexagonal piezoelectric material (6 mm) can be described in the fixed coordinate
system x—y by

cuV>w+ esV:h = piv, (6)

615V2W - 811v2¢ = 07 (7)

where w = w(x, y, t) is the anti-plane displacement in the z-direction (which is assumed to aligned with the
hexagonal symmetry axis), ¢ = ¢(x,y,?) is the electric potential, c44 is the elastic modulus measured in a
constant electric field, ¢ is the dielectric permittivity measured at a constant strain, e;s is the piezoelectric
constant, and p is the material density. V> = 0?/0x? + 0>/0)? is the in-plane Laplacian and a dot denotes
material time derivative.

The constitutive equations for the piezoelectric material can be expressed as

ow Glo}

Tyz —c44a +es— o (8)
Tyz —C442—vyv+€152;¢j )
D= e o, (10)
D:aa_;”_% (11)

where 7. and 7,. are the shear stress components, and D, and D, are the electric displacements.
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In analyzing this problem, it is convenient to express the relevant equations in the moving coordinates
&—y. Setting ¢ = x — vt and making use of the transformation proposed by Bleustein (1968), the governing
and constitutive equations may be rewritten as follows

Pw  O*w *w *w
2.2 2 2 _
oty MY
P "
ow 0
Tez 6446_§+6156_lé (14)
0w oy
T};Z—C44a+€lsa» (15)
0
Df = —811%, (16)
oy
D,=—¢g;—, 17
) 3y (17)
where
PP (18)
el
and
— e%s
C44 = Cy4 +; (19)

is the piezoelectrically stiffened elastic constant.

To solve the fundamental problem with the governing equations (12) and (13) and the mixed-type
boundary conditions (1)-(3), the integral transform method and the Wiener—-Hopf technique will be
implemented in the following derivation. From (12) and (13), the general solutions for w* and J* (in the
upper half-plane y > 0) in the double transformed domain can be obtained as follows

W (L, p,5) = A(s, ) e A (20)

V' (2y,5) = Bls, 2)e" >, (21)
where

o' (2) = Vb2 — 2020 + B2 32 — 22, (22)

B(2) = limV/e2 - 2, (23)
and

poLl_ [P

c Cy4
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is the slowness of the bulk shear wave in the piezoelectric material. ¢ — 01 is an auxiliary positive real
perturbation parameter (Li and Mataga, 1996a,b).
Application of the two-sided Laplace transform to (1)—(3) yields

T = ! T (4,8

T_W()V,O,S) - S(i’] _ /l) + +(}“7 )v (24)
¢ (1,0,5) =0, (25)
W (4,0,5) =W (45), (26)

where Re(1) > Re(4). The unknown function 7. is defined to be the shear stress 7, on the plane y = 0 for
0 < ¢ < co. Likewise, w_ is defined to be the displacement in the z-direction of the crack face y = 0t for
—oo < £ < 0. From (18) and (25), we will have B(s, 1) = —e;5A4(s, ) /1. Substitution of (20) into (26) leads
to A = w*. Then making use of (15) and substituting it into the transformed stress boundary condition (24),
we can have the following Wiener—Hopf equation

_ SN 1 7 (4,9)
_ *(07) _ 2 % S — + ’
c44[oc (/“) keﬁ (/L)]W—(iv S) sz(n . /1) + s ) (27)
where
2
e
ke = | = 28
Ca4811 (28)

is the electro-mechanical coupling coefficient for the electrode boundary condition. It is noted that the
bracketed term o*(4) — k2f"(4) in the left-hand side of (27) corresponds to the Bleustein-Gulyaev wave
function (Bleustein, 1968).

At this point it is convenient to introduce a new function $*(1) by defining

()~ 2B (1)

S S T )i/ 0 e 0 7 )
where
_Jea(1 - &)
Cog = 7p (30)

is the Bleustein—Gulyaev piezoelectric surface wave speed shielded with electrode. It is assumed in this study
that the crack speed v does not exceed cy,. Under this assumption, the function $*(A) has the properties that
S*(A) =1 as || — oo, and S*(1) has neither zeros nor poles in the A-plane by cuts along
—1/(cpg —v) < A< —gand e < 1 < 1/(cpg + v) . From the general product factorization method, $*(1) can
be written as the product of two regular functions S* (1) and S*(4), where

5:0) = [y ) (1)
500 = [t e o) )

and
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in which
o 1= [ Kz ] de
Q+(A)exp{;/g tan"! Lﬁ(_z)]zﬂ}, (33)
ﬂ 1 [ K2z d
O (J) =exp { - [ tan~! [a*‘é)] . _Zi } (34)

In view of the previous discussion, Eq. (27) may be rewritten as

1/(cog +v) — 4 M) MI()T(s)

—Cu(V1 — D22 — I :
ul :) 1/(c+0)—2 s*(n —4) s

O (MW" (4,s) =

where

ci 1/(c—v)+ 4
MoD = [len - o)+ 2020 0

The first term on the right-hand side is regular for Re(1) > —¢, except for the pole at 4 = 5. This pole can,
however, be removed by writing

Mi(2)  MI(A)—Mi(n) Mi(n)

= . 37
Sn-2" s=2 207 7
Eq. (35) can now be rearranged into the desired form
_ 1/(cog +v) — 4 e, M (n)
— 1 — b0 — 1) 22— 0" (W)W (A,s) —
C44( e) 1/(C+ U) — /LQi( )m)—(/L S) Sz(n 7 )v)
M) = M) MiG)EL(Gh) 58)
st(n—4) s ’

The left-hand side of this equation is regular for Re(1) < 0, while the right-hand side is regular for
Re(1) > —e. Applying the analytic continuation argument, therefore, each side of (38) represents a single
entire function, say E(1). By Liouville’s theorem, the bounded entire function E(1) is a constant. The
magnitude of the constant can be obtained from order conditions on E(4) as |A| — oo, which in turn are
obtained from order conditions on the dependent field variables in the vicinity of ¢ = 0. Furthermore,
7.(&,0,5) is expected to be square root singular near ¢ =0, i.e. 7, (&,0,s) = O(|§|71/2) as ¢ — 0. By using
of the Abelian theorem, E(4) vanishes identically, and then we can solve for w* from the left-hand side of
(38). Since the amplitude of displacement A(s,A) = w* in the Laplace transform domain, we find

Mi(n)\/1/(c+v) =2

A(s, ) = — . 39
e cu(V1 = b2 —i3)s?(n — A)[1/(cog +v) = 4O (4) >
Then the amplitude of ¥’ can be obtained as follows
kM 1 -2
B(s,2) = — 2 4(s, 2) M) V1/(e +0) (40)

" eis(VI— 5207 — k2)52(n — A)[1/(erg +v) — 40" (2)

Substituting (39) and (40) into (20) and (21) and making use of (18) and (14)—(17), and then inverting the
two-sided Laplace transform, we can obtain solutions for the fundamental problem in the Laplace trans-
form domain as follows
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L M) /T (e T o) =7 et
w(&,y,s) = i /r Caa 1 b2 — K2)s(n — )1/ (cng +v) — /I]Qt(,l)e d4, (41)
_ -1 KM (n)\/1/(c+v) — 2 5o (A)yrsAE 7
(l)(évya S) - 27l /F/t 315( 1 —p2p2 — kg)s(n — ﬂ)[l/(cbg + U) — /I]Qi(l) ) v
1 / M (n)\/1/(c+v) — 4 o sB Asit g 5 (42)
21 Jr, ers(V1— 0202 — k2)s(p — 2)[1/(cog + v) — 0" (2) ’
_ ; -1 M:(n)r/1/(c+v) — 4 —so (s g5
(&) = 2 /F ( /T — b22 — K2)(n — 2)[1/(cog +v) — ;L]Qi()h)e di
1 / kM (0)2n/1/ (e +v) — 7 o (s g (43)
2 Jr, (VI =022 = k2)(n = 2)[1/ (cvg +v) = A0~ (2) ’
_ §) = L M-T_ (’7)“* ()°) 1/(6‘ + U) — 4 —so* (A)y+sié
T:(S,p,5) = i /r ( T — b2 — k2)(n — 2)[1/(cog +v) — ,1]Qj(i)e dz
i M ()% (2) /T (e + o) = S
27 / (VT 220 — 2)(n — D[1/ evg +0) — A0 () o o
= 1 enk?M(n)in/1/(c+v) — 2 s (R)y+sic
De(&,y,s) = i /r,; e1s(V1 — b202 — k2)(n — 2)[1/(cog + v) — )M]Qi()t)e dz, (45)
— o= L 811k62Mi (mB"(2)\/1/(c+v) =4 —sB (Dy+sic
Dy(é7ya ) - 27.[1 /F;, 6‘15(' /1 _ bzvz _ kZ)(’/] _ )»)[1/(Cbg + U) _ )v]Q*,()») ¢ d L. (46)

The corresponding results of the dynamic stress intensity factor and the dynamic electric displacement
intensity factor expressed in the Laplace transform domain are

K - M
Kin(s) = lim v/278%,(¢,0,5) = — V2Mi) (47)
=0 i \/E
and
7a p— 3 k2 ZM*
K (5) = lim /27D, (¢,0,5) = — ——1 2V2M () | "
o eis(V1 = 20> — k2)\/s
respectively.

3. Transient analysis of a propagating crack in a piezoelectric medium

Consider a semi-infinite crack located at y = 0, x < 0 in an unbounded hexagonal piezoelectric medium
as shown in Fig. 1. It is assumed that the crack surfaces are completely coated with an infinitesimally thin
perfectly conducting electrode that is grounded, such that the electrostatic potential vanishes over the crack
surfaces. For time ¢ < 0, the piezoelectric medium is stress free and at rest. At time ¢ = 0, a pair of equal and
opposite dynamic anti-plane concentrated loadings with magnitude p are applied at the crack faces with a
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Fig. 1. Configuration and coordinate systems of a propagating crack in a piezoelectric medium.

I

distance / from the crack tip. The time dependence of the concentrated loading is represented by the
Heaviside function H(#). The boundary condition for the applied loading can be represented by

T,.(x,0,7) = —pd(x + h)H (z) (49)

where () is the Dirac delta function. The incident field of the cylindrical wave generated by the con-
centrated loading expressed in the Laplace transform domain can be obtained as follows

1
7(5,0,) = 5 - / —peh dj, (50)

The applied traction on the crack faces as indicated in (50), has the functional form e***. Since the
solutions of applying traction e on crack faces have been solved in Section 2 (by setting v = 0), the
diffracted field generated from the crack tip can be constructed by superimposing the incident wave traction
that is equal to (50). Because the dynamic stress and electric displacement intensities and the dynamic
energy release rate are the key parameters in characterizing dynamic crack growth, we will focus our
attention mainly on the determination of these quantities. When we combine (47) and (50) (by setting
v = 0), the dynamic stress intensity factor expressed in the Laplace transform domain can be obtained as
follows

—(0)s 1 on)  V2ML(A) |,
Ko™ (s) :ﬁ/p —pe h{ —T;()}d/b, (51)
where
Vb +72

M, (7) = M (2)] (52)

=0 (bog + )04 (4)
In Eq. (52), 0.(4) = Qi(/l)L_:O and by, = 1/cpe is the slowness of the Bleustein—Gulyaev piezoelectric
surface wave for the electrode boundary. By using the Cagniard method (Cagniard, 1939) of Laplace
inversion, the dynamic stress intensity factor of the stationary crack in time domain can be obtained as
follows

— bh
Ks( ,/ / ‘ dtH (b ,/ ZH(t—b 53
1l l Vi—t(t = bogh)0s (=2 1) ©H (bogh — 1) + p be/? (53)

It is noticed that the bracketed term in the integrand of (53) is a purely imaginary number as ¢ < bh, so
Kl(fl)’s(t) equals zero before the shear wave arrives at the crack tip. The reason is that for the particular case
of the electrode boundary condition considered here, the electrostatic potential is zero along the entire line
y = 0. Consequently, there is no effect from electric field to the dynamic intensity factor before the incident
shear wave is diffracted by the crack tip. It can be found that (53) has a pole singularity at © = by.h, which
corresponds to the instant of arrival of the Bleustein—Gulyaev piezoelectric surface wave. Moreover, the
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magnitude of the dynamic stress intensity factor jumps from infinity to the appropriate static value
(p\/2/(mh)) right after the Bleustein—-Gulyaev surface wave passes through the crack tip. This result is
similar to that of purely elastic solids.

Similarly, combining (48) and (50) (by setting v = 0), the dynamic electric displacement intensity factor
can be represented in the Laplace transform domain as follows

=os, L _Sllkf\/iM+(l) )
KIII (S) - 27 1} pe { 615(1 . kg)\/g dA. (54)

Applying the inverse Laplace transform to (54), the dynamic electric displacement intensity factor of the
stationary crack in time domain is

K2 T — bh
KDt il \/ = / dtH (bygh —
111 ( ) 615 1 _k2 TC3 l— T T_bbg )Q+(_T/h) T ( bg )
811k2
1/ H —b 55
615 1—/(2 bg ( )

In view of (55), it can be seen that the dynamic electric displacement intensity factor has similar charac-
teristics to those of the dynamic stress intensity factor. Since both dynamic intensities jump to a constant
value as the Bleustein—-Gulyaev surface wave arrives at the crack tip, i.e. t = bygh, it is assumed that the
value exceeds its critical value and the crack starts to propagate with a constant velocity v along the line
»y = 0. The crack speed v is less than the surface wave speed, i.e. v < cy,. The applied symmetric concen-
trated loading p on the original crack faces represented in the moving coordinate system for ¢ > by will
have the following form

12(¢,0,2) = —pd (& + v(t — bogh) + h)H (1) (56)

where & = x — v(t — bugh). Applying the Laplace transform to (56), the boundary condition expressed in the
Laplace transform domain can be obtained as follows

1 pd

w009 =75 ) 7—a

esh(l —bpg0)tsAé d)», (57)

where d = 1/v is the slowness of the crack speed. The applied traction on the crack faces, as expressed in
(57), has the functional form e**. Since the Laplace transform solutions of applying traction e on the
crack faces have been solved in the previous section, the responses induced from the propagating crack tip
can be constructed by superimposing the fundamental solutions in (47) and (48) and the stress distribution
in (57). The results of dynamic intensities expressed in the Laplace transform will be

()0 L[ opdettmt)t 0 V2ME () |
Ki () = 5 /r P - (58)

— (D) 1 d sh(1—bpgv) 2 k2 IM* ()
(D)0 77/ pde CenkV2M () (59)
615(

= A
27 A—d 1_1,21;2_/{3)\/3}(1

Inverting the Laplace transform of (58) and (59), the dynamic stress intensity factor and the dynamic
electric displacement intensity factor for the propagating crack in time domain can be obtained as follows
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K0y = V2= but)p 1 V(= bo)r = (1= bugt)bh dr, 60

(t) 7'53(1—bU) \/0 m(f—bbgh)[vf+(l—bbg ) }Q‘F( T bbg ) ( )

KD () = e1k?y/2(1 — bpgv)hp lRe V(I =bv)t — (1 — bpv)bh de.
11 ers( T— D22 — k2)\/m3 (1 — bv) ,/t—r(r—bbgh)[vr+(l—bbg Vi ]Q+( = bbg )

(61)

It is pointed out that the results in (60) and (61) are valid only for ¢ > by.h. By using contour integration,
the integrals in (60) and (61) can be evaluated and yield

@y (L= bogt)p 2 3
KIII (t) - MQ:(CZ) \/7'[[17([ — bbgh) + h]H(t bbgh)5 (62)

(D) Fllk (1 — bbg ) 2 _
Ky " (t) = ers(V1 — b202 — k2)V/T — boQ* (d )\/n[v(l — bygh) Jrh}H(t bugh). (63)

The expression for KHTI"”(t) in (62) has the interesting form of the product of a function of the crack
velocity (1 — bygv)/(V'1 — bvQ’ (d)) and the corresponding stationary crack solution KI(fI) *(¢) in (53) with a
distance v(¢ — bpgh) + h from the crack tip. The value (1 — byev)/(V1 — bvQ’ (d)) is a universal function
that depends only on crack speed and piezoelectric material properties. Similarly, it is easy to find from (55)
and (63) that the universal function for the dynamic electric displacement intensity factor is
(1 = bpev)(1 — k2)/[V1 — bo(V1 — b0 — k2)Q"(d)]. Tt can be verified that as the characteristic length
h — 0, the solutions in (62) and (63) are the same as the earlier results obtained in Li and Mataga (1996a).
Furthermore, as the electro-mechanical coupling coefficient £, — 0, the solution expressed in (62) degen-
erates into the solution for anti-plane crack propagation in a purely elastic medium (Ma and Ing, 1997). If
the crack speed v — 0, (62) and (63) recover the solutions in (53) and (55).

It is worthy to note that the dynamic stress intensity factor KI(ITI)’”(I) expressed in (62) goes to zero as v
approaches cp, for the particular electrode case. This agrees with the result in Li and Mataga (1996a). The
vanishing of stress intensity factor at the Bleustein—Gulyaev surface wave speed provides the limiting speed
for crack propagation. It is analogous to the case of in-plane crack extension for purely elastic materials, for
which the limiting speed is the Rayleigh wave. The dynamic electric displacement intensity factor, however,
does not vanish at the surface speed. With the aid of the identity

1 — by,v
V1—p2 -k = b , 64
(=K1 A+ bogv) (VI = b2 +R2) (4

the dynamic electric displacement intensity factor expressed in (63) attains the following finite non-zero
value as v approaches cp,

K21 — k4 "4 k2
lim K2 (1) = enk; (1 —k2)(1 4 bygv) (V1 — b20* + k7)p 2 H(t — bugh). (65)
U—Cpg €15V 1 - bUQi(d) TE[U(t - bbgh) + h]

The energy release rate is another important quantity in dynamic fracture mechanics. As mentioned
previously, there is no contribution from electric field to the dynamic energy release rate because of the
special electrode boundary condition. The energy release rate can be calculated in a way similar to the
purely elastic case and is computed by
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0¢
< o¢

7 (&,0,0)d¢ (66)

a

G(r) = 2lim [ (§Ot)2 (£,0,8) + D, (E,0,8) =2 (£,0, ) + vE | dé

—a
a

2t [ (6005

To calculate the dynamic energy release rate, the shear stress 7, and anti-plane displacement w of the
propagating crack along y = 0 should be obtained first. Combining (57) with the fundamental solutions
expressed in (41) and (44), the anti-plane displacement w and shear stress 7,. in the Laplace transform
domain can be represented as follows

1 / pdeSh(l_bbgv)m d { —1 / M} (’71) 1/<C+U) -1, e« (m)y+sné d’,’ }
2 (>
1y, Caa(V1 =020 = kZ2)s(n, —my)[1/ (cog +v) —1,] 0" (n5)

W(E,p,s)=

27 n—d 21
(67)
(6 ) 1 / pdesh(l—bbgv)m d 1 / Mi(’ll)“%’h) 1/(C + l)) —M© —so* () y+sip & 4
Tz ) - 3 " _:
e o m—d M\ 2, (VT 0 — k)0 — m)[1/(cve £ 0) — mal 0" ()

RS KM (ny)oc (12)/1/ (¢ 4 v) — e F trrtomt d } (68)
. 2 .
27 Jr,, (V1 =207 — k2)(n, — m,)[1/ (cog + v) — 1] O (n,)

By setting y = 0, inverting the Laplace transform, and then taking the limit x — 0, we can obtain

ggnaf(SOt)

_ (1= bpgv)hp . :Re V(T =bv)t — (1= byev)bhH (&) i@
w2 (V1 =020 —k2)\/(T—=bv) =0 Jo Vi—1(t = bugh)[vT+ (1 — bygv) ]Q+( - bbL )\/—_f ,

(69)
15133 7,.(¢,0,1)
_ V= bugt)p lim /tRe [ V(I = bo) = (1= bugt) BRH (O) ] dr. (70)
P00 8 I | Ja(e — bugh)loe+ (1 bogoQ (i )V
Substituting (69) and (70) into (66), and making use of the identity (Freund, 1972¢)
im [ e - "

the dynamic energy release rate of the propagating crack can be obtained as follows

_ (1 — bbg )h t . \/(1 — bv)‘[ — (l — bbgv)bh de ’
O VTP — )1 — o) { /o ! {m(r—bbgh)[vﬂ:nL(l ~ boe0)H10: (s )] } '
(72)
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For time ¢ > by,h, we can carry out the integral in (72) and have

_ 1 (1 — boev)p 2 2 —
O VT &) { VI= b0 (d) \/ Alolt = begh) + h]} e )

_ ! (@) r
V=) [Km 0] - (73)
Similar to the dynamic stress intensity factor, the dynamic energy release rate in (73) goes to zero as v
approaches cp,. Hence, we have not to study the supersonic case in this paper under the assumption of
electrode boundary conditions.

Some special cases are examined here. By setting v — 0, Eq. (72) can be reduced to the dynamic energy
release rate of a stationary crack subjected to concentrated loading on the crack faces and yields

_L t e T bh - 2:; (0),5 112
Gf“)‘ﬂmu—kz){/o : [mu—bbgmg(—r/m]d} Rl g o O T

As h — 0, the expression in (73) is the same as the solution obtained in Li and Mataga (1996a). As k, — 0,
Eq. (74) reduces to the well-known purely elastic results

Gi(1) = 5, K (0 (75)

4. Numerical results

In the previous section, the transient solutions for dynamic stress intensity factor, dynamic electric
displacement intensity factor, and dynamic energy release rate of a propagating crack subjected to anti-
plane concentrated loading on the crack faces are derived. In this section, numerical calculations are carried
out to show the influence of the pertinent parameters. Three piezoelectric materials, BaTiO;, PZT-4, and
PZT-5, are chosen for numerical evaluations. The material properties of these three piezoelectric media are
given in Table 1.

Fig. 2 shows the variation of the non-dimensional dynamic stress intensity factors with the normalized
time ¢/bh for v/cy, = 0.3. It can be seen that the stress intensity factors have no obvious difference for these
three piezoelectric materials. Since the electrostatic potential is zero along the entire line y = 0, the transient
response of the stationary crack keeps zero before the shear wave arrives at the crack tip (¢ < bh). After-
ward it decreases violently during the stage bh < t < bpgh, and reveals a singularity as the Bleustein—Gul-
yaev piezoelectric surface wave arrives at the crack tip (f = bygh). For time ¢ > byeh, the crack starts to
propagate and the dynamic stress intensity factor decreases smoothly from the static solution for the
stationary crack. As indicated in (53), the static solution (p+/2/(mh)) is independent of material properties.

The transient responses of the non-dimensional dynamic electric displacement intensity factors are
shown in Fig. 3. The transient behavior is similar to that of dynamic stress intensity factor. However, it is

Table 1

Material properties of BaTiO;, PZT-4, and PZT-5 piezoelectric media (Li and Mataga, 1996a)
Compound BaTiO; PZT-4 PZT-5
p (kg/m®) 5700 7500 7750
¢4 (10" N/m?) 44 2.56 2.11
g1 (10719 C/Vm) 98.722 64.634 81.103

ejs (C/m?) 11.4 12.7 12.3
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Fig. 3. Normalized dynamic electric displacement intensity factors versus normalized time for various piezoelectric materials.

3

pointed out that the jump values for static solutions are not the same as the surface wave passes the crack
tip. Moreover, the dynamic electric displacement intensity factors exhibit apparent differences after the
propagation of the crack for these three piezoelectric materials Fig. 4 shows the transient responses of the
non-dimensional dynamic energy release rates. It can be seen that the magnitude of the dynamic energy
release rate also approaches infinity as the surface wave reaches the crack tip, and then diminishes with time
for ¢t > bygh.

Figs. 5-7 show the dynamic stress intensity factor, the dynamic electric displacement intensity factor,
and the dynamic energy release rate for different values of crack velocity v. It indicates that the stationary
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Fig. 5. Normalized dynamic stress intensity factors versus normalized time for different values of crack speed v.

crack will induce the largest dynamic intensity factors and energy release rate in all cases. In addition, the
dynamic stress intensity factor and energy release rate are small when the magnitude of the ratio v/cy, is
large, while it is not always true for the dynamic electric displacement intensity factor. It can also be viewed
that the dynamic stress intensity factor and energy release rate will go to zero as the propagating speed
v — cve. However, the dynamic intensity factor for electric displacement does not vanish at the Bleustein—
Gulyaev piezoelectric surface wave speed.
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Fig. 7. Normalized dynamic energy release rates normalized time for different values of crack speed v.

5. Conclusions

The transient response of a propagating crack subjected to dynamic anti-plane concentrated loading in a
piezoelectric medium has been investigated. It is assumed that the crack surfaces are coated with an
infinitesimally thin conducting electrode that is grounded. A new fundamental solution for the piezoelec-
trically propagating crack is derived and the transient solutions are determined by superposition of
the fundamental solution in the Laplace transform domain. Exact analytical transient solutions for the
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dynamic stress intensity factor, the dynamic electric displacement intensity factor, and the dynamic energy
release rate are obtained and expressed in explicit forms. It is found that the dynamic intensities and the
dynamic energy release rate of a stationary crack will jump to the corresponding static values after the
surface wave passes the crack tip. For the propagating case, the result indicates that the dynamic stress
intensity factor and the dynamic energy release rate go to zero as the crack speed v — c,,. However, the
dynamic intensity factor for electric displacement attains a non-zero value at the Bleustein—Gulyaev pie-
zoelectric surface wave speed. The solution obtained in this paper can be considered to be a Green function
for the associated problem. The solutions to problems of any arbitrary spatially distributed loading, or
more general time dependence, can be obtained by superposition. Although only the intensities and energy
release rate are derived in this study, the transient full-field solutions for the crack propagation problem can
also be obtained by using the fundamental solutions proposed in Section 2.
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